Filters
Question type

Use a table of integrals to evaluate the integral. x3sin(x2+3) dx\int x ^ { 3 } \sin \left( x ^ { 2 } + 3 \right) d x


A) 12sin(x2+3) 12x2cos(x2+3) +C\frac { 1 } { 2 } \sin \left( x ^ { 2 } + \sqrt { 3 } \right) - \frac { 1 } { 2 } x ^ { 2 } \cos \left( x ^ { 2 } + \sqrt { 3 } \right) + C
B) 12sin(x2+3) 12x2cos(x2+3) +C\frac { 1 } { 2 } \sin \left( x ^ { 2 } + 3 \right) - \frac { 1 } { 2 } x ^ { 2 } \cos \left( x ^ { 2 } + 3 \right) + C
C) 12sin(x2+3) 12x2cos(x2+3) +C- \frac { 1 } { 2 } \sin \left( x ^ { 2 } + \sqrt { 3 } \right) - \frac { 1 } { 2 } x ^ { 2 } \cos \left( x ^ { 2 } + \sqrt { 3 } \right) + C
D) 12sin(x2+3) 12x2cos(x2+3) +C- \frac { 1 } { 2 } \sin \left( x ^ { 2 } + 3 \right) - \frac { 1 } { 2 } x ^ { 2 } \cos \left( x ^ { 2 } + 3 \right) + C

E) B) and C)
F) A) and B)

Correct Answer

verifed

verified

The region {(x+y) x7,0yex/5}\left\{ ( x + y ) \mid x \geq - 7,0 \leq y \leq e ^ { - x / 5 } \right\} is represented below. Find the area of this region to two decimal places.  The region  \left\{ ( x + y )  \mid x \geq - 7,0 \leq y \leq e ^ { - x / 5 } \right\}  is represented below. Find the area of this region to two decimal places.    A)   20.28  B)   17.89  C)   16.08  D)   15.89  E)   15.87


A) 20.2820.28
B) 17.8917.89
C) 16.0816.08
D) 15.8915.89
E) 15.8715.87

F) A) and D)
G) C) and D)

Correct Answer

verifed

verified

Find the integral. dxx(x2)\int \frac { d x } { x ( x - 2 ) }

Correct Answer

verifed

verified

Evaluate the integral using the indicated trigonometric substitution. x3x2+25dx;x=5tanθ\int \frac { x ^ { 3 } } { \sqrt { x ^ { 2 } + 25 } } d x ; \quad x = 5 \tan \theta

Correct Answer

verifed

verified

Evaluate the integral using an appropriate trigonometric substitution. 13x21x4dx\int _ { 1 } ^ { 3 } \frac { \sqrt { x ^ { 2 } - 1 } } { x ^ { 4 } } d x

Correct Answer

verifed

verified

Evaluate the integral. 2dyy2+2y3\int _ { 2 } ^ { \infty } \frac { d y } { y ^ { 2 } + 2 y - 3 }

Correct Answer

verifed

verified

Evaluate the integral or show that it is divergent. 5dx4x2+4x+5\int _ { - \infty } ^ { \infty } \frac { 5 d x } { 4 x ^ { 2 } + 4 x + 5 }

Correct Answer

verifed

verified

Evaluate the integral. 04xx+8dx\int _ { 0 } ^ { 4 } \frac { x } { x + 8 } d x

Correct Answer

verifed

verified

Find the integral. x33x2+6x2x32x2+xdx\int \frac { x ^ { 3 } - 3 x ^ { 2 } + 6 x - 2 } { x ^ { 3 } - 2 x ^ { 2 } + x } d x


A) lnx1x22x1+x+C\ln \left| \frac { x - 1 } { x ^ { 2 } } \right| - \frac { 2 } { x - 1 } + x + C
B) lnx2x12x1+x+C\ln \left| \frac { x ^ { 2 } } { x - 1 } \right| - \frac { 2 } { x - 1 } + x + C
C) lnx2x11x1+x+C\ln \left| \frac { x ^ { 2 } } { x - 1 } \right| - \frac { 1 } { x - 1 } + x + C
D) lnx1x21x1+x+C\ln \left| \frac { x - 1 } { x ^ { 2 } } \right| - \frac { 1 } { x - 1 } + x + C

E) All of the above
F) A) and B)

Correct Answer

verifed

verified

Make a substitution to express the integrand as a rational function and then evaluate the integral. 425xx100dx\int _ { 4 } ^ { 25 } \frac { \sqrt { x } } { x - 100 } d x Round the answer to four decimal places.

Correct Answer

verifed

verified

Evaluate the integral. 019xsinπxdx\int _ { 0 } ^ { 1 } 9 x \sin \pi x d x

Correct Answer

verifed

verified

Evaluate the indefinite integral. xcos9xdx\int x \cos 9 x d x

Correct Answer

verifed

verified

Evaluate the integral. x/3x/22cot2xdx\int _ { x / 3 } ^ { x / 2 } 2 \cot ^ { 2 } x d x

Correct Answer

verifed

verified

Use the Trapezoidal Rule to approximate 23e3/xdx\int _ { 2 } ^ { 3 } e ^ { 3 / x } d x for n=4n = 4 . Round the result to four decimal places.

Correct Answer

verifed

verified

Find the integral using an appropriate trigonometric substitution. x16x2dx\int x \sqrt { 16 - x ^ { 2 } } d x

Correct Answer

verifed

verified

Determine whether the improper integral converges or diverges, and if it converges, find its value. π/25π/6cosx1sinxdx\int _ { \pi / 2 } ^ { 5 \pi / 6 } \frac { \cos x } { \sqrt { 1 - \sin x } } d x

Correct Answer

verifed

verified

Evaluate the integral using integration by parts with the indicated choices of uu and dvd v . 6θcosθdθ,u=6θ,dv=cosθdθ\int 6 \theta \cos \theta d \theta , u = 6 \theta , d v = \cos \theta d \theta


A) 6sinθ+6cosθ+C6 \sin \theta + 6 \cos \theta + C
B) 6θcosθ+6sinθ+C6 \theta \cos \theta + 6 \sin \theta + C
C) 6θsinθ+6cosθ+C6 \theta \sin \theta + 6 \cos \theta + C
D) 6sinθ6cosθ+C6 \sin \theta - 6 \cos \theta + C
E) None of these

F) A) and E)
G) All of the above

Correct Answer

verifed

verified

Evaluate the indefinite integral. xcos9xdx\int x \cos 9 x d x

Correct Answer

verifed

verified

Use the Table of Integrals to evaluate the integral. e6xsin3xdx\int e ^ { 6 x } \sin 3 x d x

Correct Answer

verifed

verified

Use a table of integrals to evaluate the integral. e7xsin3xdx\int e ^ { - 7 x } \sin 3 x d x

Correct Answer

verifed

verified

Showing 21 - 40 of 160

Related Exams

Show Answer