Filters
Question type

Use polar coordinates to find the volume of the solid under the paraboloid z=x2+y2z = x ^ { 2 } + y ^ { 2 } and above the disk x2+y24x ^ { 2 } + y ^ { 2 } \leq 4 . Select the correct answer.


A) 64π64 \pi
B) 5.3π5.3 \pi
C) 32π32 \pi
D) 16π16 \pi
E) 8π8 \pi

F) A) and E)
G) All of the above

Correct Answer

verifed

verified

Find the area of the surface SS where SS is the part of the sphere x2+y2+z2=16x ^ { 2 } + y ^ { 2 } + z ^ { 2 } = 16 that lies inside the cylinder x24x+y2=0x ^ { 2 } - 4 x + y ^ { 2 } = 0 .

Correct Answer

verifed

verified

Use cylindrical coordinates to evaluate the triple integral EydV\iiint _ { E } y d V where EE is the solid that lies between the cylinders x2+y2=3x ^ { 2 } + y ^ { 2 } = 3 and x2+y2=7x ^ { 2 } + y ^ { 2 } = 7 above the xyx y -plane and below the plane z=x+4z = x + 4 .

Correct Answer

verifed

verified

Evaluate the integral Bf(x,y,z) dV\iiint _ { B } f ( x , y , z ) d V where f(x,y,z) =xy2+yz2f ( x , y , z ) = x y ^ { 2 } + y z ^ { 2 } and B={(x,y,z) 0x2,1y1,0z3}B = \{ ( x , y , z ) \mid 0 \leq x \leq 2 , - 1 \leq y \leq 1,0 \leq z \leq 3 \} with respect to x,yx , y , and zz , in that order Select the correct answer.


A) 4
B) 28
C) 36
D) 24

E) None of the above
F) All of the above

Correct Answer

verifed

verified

A

Use a double integral to find the area of the region RR where RR is bounded by the circle r=8sinθr = 8 \sin \theta . Select the correct answer.


A) 64π64 \pi
B) 16π16 \pi
C) 8π8 \pi
D) 32π32 \pi

E) A) and B)
F) A) and C)

Correct Answer

verifed

verified

Find the mass of the lamina that occupies the region DD and has the given density function, if DD is bounded by the parabola x=y2x = y ^ { 2 } and the line y=x2y = x - 2 . ρ(x,y) =3\rho ( x , y ) = 3 Select the correct answer.


A) 32\frac { 3 } { 2 }
B) 2
C) 27
D) 272\frac { 27 } { 2 }
E) None of these

F) C) and D)
G) B) and C)

Correct Answer

verifed

verified

D

Use cylindrical coordinates to evaluate Bx2+y2dV\iiint _ { B } \sqrt { x ^ { 2 } + y ^ { 2 } } d V where EE is the region that lies inside the cylinder x2+y2=25x ^ { 2 } + y ^ { 2 } = 25 and between the planes z=3z = - 3 and z=5z = 5 . Round the answer to two decimal places.

Correct Answer

verifed

verified

Use cylindrical coordinates to evaluate the triple integral EydV\iiint _ { E } y d V where EE is the solid that lies between the cylinders x2+y2=3x ^ { 2 } + y ^ { 2 } = 3 and x2+y2=7x ^ { 2 } + y ^ { 2 } = 7 above the xyx y -plane and below the plane z=x+4z = x + 4 . Select the correct answer.


A) 8.578.57
B) 0
C) 3.43.4
D) 9.199.19
E) 0.540.54

F) A) and E)
G) A) and D)

Correct Answer

verifed

verified

The sketch of the solid is given below. Given a=7a = 7 , write the inequalities that describe it.  The sketch of the solid is given below. Given  a = 7 , write the inequalities that describe it.    A)   r ^ { 2 } \leq z \leq 7 + r ^ { 2 }  B)  None of these C)   r ^ { 2 } - 7 \leq z \leq r ^ { 2 }  D)   r ^ { 2 } \leq z \leq 7 - r ^ { 2 }  E)   r ^ { 2 } \leq z \leq 7


A) r2z7+r2r ^ { 2 } \leq z \leq 7 + r ^ { 2 }
B) None of these
C) r27zr2r ^ { 2 } - 7 \leq z \leq r ^ { 2 }
D) r2z7r2r ^ { 2 } \leq z \leq 7 - r ^ { 2 }
E) r2z7r ^ { 2 } \leq z \leq 7

F) A) and E)
G) A) and C)

Correct Answer

verifed

verified

Describe the region whose area is given by the integral. 0x/40cos2θ2rdrdθ\int _ { 0 } ^ { x / 4 } \int _ { 0 } ^ { \cos 2 \theta } 2 r d r d \theta

Correct Answer

verifed

verified

half the region insi...

View Answer

Calculate the double integral. Round your answer to two decimal places. RxyeydA,R={(x,y)0x3,0y3}\iint _ { R } x y e ^ { y } d A , R = \{ ( x , y ) \mid 0 \leq x \leq 3,0 \leq y \leq 3 \}

Correct Answer

verifed

verified

Use the transformation x=2u23v,y=2u+23vx = \sqrt { 2 } u - \sqrt { \frac { 2 } { 3 } } v , y = \sqrt { 2 } u + \sqrt { \frac { 2 } { 3 } } v to evaluate the integral R(x2xy+y2)dA\iint _ { R } \left( x ^ { 2 } - x y + y ^ { 2 } \right) d A , where RR is the region bounded by the ellipse x2xy+y2=2x ^ { 2 } - x y + y ^ { 2 } = 2 .

Correct Answer

verifed

verified

Calculate the iterated integral. Round your answer to two decimal places. 06034x+4ydxdy\int _ { 0 } ^ { 6 } \int _ { 0 } ^ { 3 } \sqrt { 4 x + 4 y } d x d y


A) 94.2694.26
B) 134.26134.26
C) 114.26114.26
D) 84.2684.26
E) 74.2674.26

F) B) and C)
G) B) and D)

Correct Answer

verifed

verified

Find the mass of the solid SS bounded by the paraboloid z=6x2+6y2z = 6 x ^ { 2 } + 6 y ^ { 2 } and the plane z=5z = 5 if SS has constant density 3 .

Correct Answer

verifed

verified

Use polar coordinates to find the volume of the solid bounded by the paraboloid z=76x26y2z = 7 - 6 x ^ { 2 } - 6 y ^ { 2 } and the plane z=1z = 1 . Select the correct answer.


A) 6π6 \pi
B) 13π13 \pi
C) 3π3 \pi
D) 4.5π4.5 \pi
E) 2π2 \pi

F) B) and E)
G) A) and C)

Correct Answer

verifed

verified

Find the mass and the moments of inertia Ix,IyI _ { x } , I _ { y } , and I0I _ { 0 } and the radii of gyration xˉ\bar { x } and yˉ\bar { y } for the lamina occupying the region RR , where RR is the region bounded by the graphs of the equations x=2y,x=0x = 2 \sqrt { y } , x = 0 , and y=2y = 2 , and having the mass density ρ(x,y)=xy\rho ( x , y ) = x y .

Correct Answer

verifed

verified

Use spherical coordinates. Evaluate B(x2+y2+z2) 2dV\iiint _ { B } \left( x ^ { 2 } + y ^ { 2 } + z ^ { 2 } \right) ^ { 2 } d V , where BB is the ball with center the origin and radius 4 .


A) 655367π\frac { 65536 } { 7 } \pi
B) 43747\frac { 4374 } { 7 }
C) 43747π\frac { 4374 } { 7 } \pi
D) 5598727π\frac { 559872 } { 7 } \pi
E) None of these

F) None of the above
G) A) and C)

Correct Answer

verifed

verified

Use the given transformation to evaluate the integral. RxydA\iint _ { R } x y d A , where RR is the region in the first quadrant bounded by the lines y=x,y=3xy = x , y = 3 x and the hyperbolas xy=2,xy=4;x=uv,y=vx y = 2 , x y = 4 ; x = \frac { u } { v } , y = v .


A) 9.4479.447
B) 3.2963.296
C) 8.8418.841
D) 4.4474.447
E) 5.0885.088

F) A) and B)
G) C) and D)

Correct Answer

verifed

verified

Evaluate the iterated integral by converting to polar coordinates. Round the answer to two decimal places. 3309y2(x2+y2)3/2dxdy.\int _ { - 3 } ^ { 3 } \int _ { 0 } ^ { \sqrt { 9 - y ^ { 2 } } } \left( x ^ { 2 } + y ^ { 2 } \right) ^ { 3 / 2 } d x d y .

Correct Answer

verifed

verified

\[152.68\]

Find the mass of a solid hemisphere of radius 5 if the mass density at any point on the solid is directly proportional to its distance from the base of the solid.

Correct Answer

verifed

verified

Showing 1 - 20 of 159

Related Exams

Show Answer